The Political Economy of Carbon Pricing Policy Design

Joseph E. Aldy
Harvard Kennedy School

Bonn, Germany
November 14, 2017
Establishing and Phasing in Policy Targets

- Maximize economic welfare
 - Carbon price = expected marginal benefits (e.g., SCC)
- Cost-effectively implement a quantity goal
- Phase-in C pricing
 - Pilot cap-and-trade: EU, China
 - Ramp up carbon tax over time: British Columbia
Point of Compliance and Scope of Coverage

- **Upstream**
 - Administratively simple: British Columbia carbon tax

- **Downstream**
 - Target large emitters: EU ETS

- **Hybrid**
 - California cap-and-trade
Addressing Uncertainties in Carbon Pricing

- Mitigate adverse impacts of abatement cost shocks
- Banking and borrowing
 - Banking: EU ETS
- Safety valves, price floors, and collars
 - Allowance price containment reserve: California
 - Auction reserve price: California, RGGI
 - Carbon price floor: UK
Updating Carbon Pricing

- “Act-Learn-Act”
 - Regular updating of NDCs under Paris Agreement
- Automatic updating
 - C tax rate increase if emissions above benchmark: Switzerland
- Discretionary updating
 - New legislation and regulation: EU, RGGI, CA
 - Structured discretion: schedule updating to align with NDC updating process
Use of Revenues and Allowance Value

- Reduce existing tax rates on personal, business income
 - Tax swaps: Sweden, British Columbia
- Build political support for climate policy
 - Free allowance allocations: EU ETS, China
- Finance clean energy investment
 - RGGI
 - California
Mitigating Competitiveness Risks

- Risk that energy-intensive manufacturing may relocate activity to low- and zero-C price jurisdictions
- Mitigate risk through policy design
 - Exempt energy-intensive industries: Denmark C tax
 - Output-based allowance allocations: EU ETS, California
 - Border tax adjustment
Accounting for Complex Landscapes and Overlapping Policy Instruments

- “Belt and suspenders” climate policy common
 - EU, California

- Reduces cost-effectiveness
 - Cap-and-trade with supplemental regulations and subsidies increases costs with no incremental environmental benefit

- Suppresses carbon prices in cap-and-trade
 - Weakens incentives for innovation, energy efficiency
Linking Carbon Pricing Policies

• Linking improves global cost-effectiveness
 ▪ Cap-and-trade linking can increase market liquidity and reduce compliance costs

• Various types of linking
 ▪ Direct linkage: California and Quebec
 ▪ Indirect linkage through offsets (CDM)
 ▪ Greater salience for linking cap-and-trade
 ▪ Prospects for linking heterogeneous policies
C Pricing Policy Design and Durability of Climate Policy

<table>
<thead>
<tr>
<th>Design Element</th>
<th>Role in Political Durability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phasing in policy targets</td>
<td>Transition to C price demonstrates political viability</td>
</tr>
<tr>
<td>Point of compliance</td>
<td>Low administrative complexity; improved cost-effectiveness</td>
</tr>
<tr>
<td>Addressing uncertainty</td>
<td>Flexible implementation mitigates cost shocks</td>
</tr>
<tr>
<td>Updating carbon pricing</td>
<td>Maintain policy support by adapting to new info</td>
</tr>
<tr>
<td>Use of revenues</td>
<td>Secure stakeholder support; broaden political coalition</td>
</tr>
<tr>
<td>Mitigating competitiveness risks</td>
<td>Broaden support to business, labor stakeholders; increases environmental benefits of domestic policy</td>
</tr>
<tr>
<td>Overlapping policy instruments</td>
<td>Higher climate policy costs may be necessary political cost of securing broad coalition</td>
</tr>
<tr>
<td>Linking</td>
<td>Flexibility to buffer program against shocks</td>
</tr>
</tbody>
</table>
The Political Economy of Carbon Pricing Policy Design

Joseph E. Aldy
Associate Professor of Public Policy
Harvard Kennedy School
79 John F. Kennedy Street
Cambridge, MA 02138
e: joseph_aldy@hks.harvard.edu
v: 617-496-7213
i: http://scholar.harvard.edu/jaldy

The paper can be accessed at:
https://tinyurl.com/co2price-ja